Optimal Sorting Circuits for Short Keys

Wei-Kai Lin

and Elaine Shi (Carnegie Mellon university)

Sorting, parameters: n, k, w

Stability is not required

Output

Random-Access Machine model (RAM)

- Textbook counting sort and radix sort: $O(n \cdot k)$
- Sort n integers, nearly linear time (e.g. $O(n \cdot \sqrt{\log \log n})$ [Kirkpatrick-Reisch81][Andersson-Hagerup-Nilsson-Raman95] [Han-Thorup02] [Thorup02] [Han04] [Belazzougui-Brodal-Nielsen14] (word size > log n bits)
- Techniques: counting / hashing based need random accesses

Circuit is **fixed**

more challenging

Sorting circuits imply *super* efficient algorithms

- Offline oblivious RAM [Boyle-Naor16]
- Function inversion / static non-adaptive data structures [Hellman80] [Corrigan-Gibbs&Kogan19] [Dvořák-Koucký-Král-Slívová21]
- Network coding conjecture [Ahlswede-Cai-Li-Yeung00] [Li-Li04] [Adler-Harvey-Jain-Kleinberg-Lehman06] [Afshani-Freksen-Kamma-Larsen19] [Asharov-Lin-Shi21]

Implication

Sorting circuit is "not easier" to construct

Lower bound for XXX is "not easier than lower bound for sorting circuits" (barrier for lower bound)

Question:

Best sorting in circuit size and depth?

Previous sorting circuits

Comparison-based "sorting networks":

- Bitonic sort [Batcher68] size $O((k+w) \cdot n \log^2 n)$, depth $O(\log^2 n)$ (practical)
- AKS [Ajtai-Komlos-Szemeredi83] [Patterson90] [Seiferas09] [Goodrich14] size $O((k+w) \cdot n \log n)$, depth $O(\log n)$

• Comparison-based:

• even when k=1 (zero-one principle [Knuth98])

- $(k + w) \cdot n \cdot k$ is necessary
- If stable (order preserving), $n \log n$ even when k = 1 [Lin-Shi-Xie19]

Previous sorting circuits

Non-comparison-based, indivisible payload, not stable:

- [Pippenger96], "self-routing superconcentrator" size $O((k+w) \cdot n + n \cdot \log n)$, depth $O(\log^2 n)$
- [Leighton-Ma-Suel95] [Mitchell-Zimmerman14] [**Lin**-Shi-Xie19] (randomized) [Asharov-Komargodski-**Lin**-Nayak-Peserico-Shi20] [Dittmer-Ostrovsky20] size $O((k+w)\cdot n\cdot k\cdot \log\log n)$, depth $poly\log n$
- [Asharov-**Lin**-Shi21] size $O((k+w) \cdot n \cdot k \cdot poly(\log^* n \log^* (k+w)))$, depth $> poly \log n$

All poly log n depth

• [Koucký-Král21, concurrent] size $O((k+w) \cdot n \cdot k \cdot (\log^* n - \log^* (k+w))$, depth $O(\log^3 n)$

Previous "small" sorting circuits

 \rightarrow All $poly \log n$ depth

Lower bound is $\log n$ [Cook-Dwork-Reischuk86]

AKS is $O(\log n)$ depth

Some implication need log depth

[Corrigan-Gibbs&Kogan19] [Dvořák-Koucký-Král-Slívová21]

Main question:

Small size (<< n log n) and log depth?

Main Theorem:

Sort n elements, each consists of k-bit key and w-bit payload, in circuit size $O((k+w) \cdot n \cdot k \cdot poly(\log^* n - \log^*(k+w)))$, depth $O(\log n + \log w)$

Non-comparison, "indivisible" payload, not stable

Size =
$$O((k+w) \cdot n \cdot k)$$
 for any $(k+w) > \log^{(100)} n$ [optimal]

Intermediate result, Deterministic Oblivious Parallel RAM: Sort n elements, each consists of k-bit key and w-bit payload, in total work $O(n \cdot k)$, parallel time $O(\log n)$ [optimal]

Application: To hide data from adversary that "observe accesses" E.g. oblivious sorting is essential for oblivious RAM (ORAM) algorithms [GO96] [Ajtai10] [DMN1] [GM11] [KLO12] [CGLS17] [PPRY18] [AKLNPS20] [DO20] ...

Main Theorem:

Sort n elements, each consists of k-bit key and w-bit payload, in circuit size $O((k+w) \cdot n \cdot k \cdot poly(\log^* n - \log^*(k+w)))$, depth $O(\log n + \log w)$

Challenges

Achieve $\log n$ depth circuit for k=1:

- All previous & concurrent results takes depth poly log n
 [Pippenger96] [Asharov-Lin-Shi21] [Koucký-Král21]
 Based on Pippenger's "self-routing superconcentrator"
- Need depth $O(\log n)$

Novel 1-bit to k-bit upgrade:

- 1-bit is not stable → "radix sort" not work
- "Quick sort" approach (using median) → poly log factors
 [Lin-Shi-Xie19] [Asharov-Lin-Shi21] [Koucký-Král21]
- Need "additive" depth

1-bit to *k*-bit upgrade

Previous approaches

Radix sort?

n elements, k-bit keys

1-bit sorter (least significant bit)

1-bit sorter (2nd least significant bit)

If stable and indivisible, $n \log n$ is necessary [Lin-Shi-Xie19]

1-bit to *k*-bit upgrade

Our new abstraction: p-Segmenter

p segments

1-bit to k-bit upgrade

Segmenter "errors"

1. Wrong segment

2. Correct segment, wrong position

n elements, k-bit key (2^k distinct keys)

 2^{3k} -segmenter

 $n/2^{3k}$ elements in wrong seg

2^{3k} segments

1/2³k wrong seg

Element in correct seg, but wrong position? Sorting every seg is too expensive

- 2^k distinct keys in 2^{3k} segments
 - → Almost all seg consist identical keys when totally sorted ©
- 2^k (out of 2^{3k}) seg "mixed" \rightarrow wrong position \otimes
- \rightarrow At most $n/2^{2k}$ wrong position

Move short array to segments

1-bit to *k*-bit upgrade

Segmenter + 1-bit sorting

Output sorted elements

Revisit AKS sorting (log depth, parallel)

Revisit AKS sorting (log depth, parallel)

Segmenter based on AKS

 2^k -segmenter (comparator network), taking size $O(n \cdot k)$, depth O(k) ("wrapping lemma" of [AKS83])

1-Bit sorting in log n depth circuit

Previous approaches

Building block

[Pippenger96] [Ash-Kom-Lin-Nay-Pes-Shi20] [Asharov-Lin-Shi21]

n elements

"Approx sort"

Loose compaction

n/2 elements

"Approx sort"

Loose compaction

··· (recurse)

Input: *n* elements, < 1% marked

Loose compaction

Output: n/2 elements, include all marked input

Depth of loose compact = $\log n$

→ Total depth = poly log

1-Bit sorting in log n depth circuit

Low depth "sparse" loose compaction

1-bit sorting (aka tight compaction)

Building block

[Pippenger96] [Ash-Kom-**Lin**-Pes-Shi20]

Improved construct:

- poly log n-degree
 expander graph
 (const degree in Pippenger)
- Size: O(n)
- Depth: $O(\log n)$

+

"Repeated bootstrapping"
[Asharov-Lin-Shi21]

Input: n elements, $n/poly \log n$ marked

Sparse Loose compaction

Output: $n/\log n$ elements, include all marked input

Previous:

Apply several

loose compact...

→ Depth > log n

Epilogue: Reducing poly log* to log*

This work:

size
$$O((k+w) \cdot n \cdot k \cdot poly(\log^* n - \log^*(k+w)))$$
, depth $O(\log n)$

[Koucký-Král21, concurrent]

size
$$O((k+w) \cdot n \cdot k \cdot (\log^* n - \log^*(k+w)))$$
, depth $O(\log^3 n)$

Better "repeated bootstrapping" technique

Putting together:

Sort n elements, k-bit key and w-bit payload, circuit size $O((k+w) \cdot n \cdot k \cdot (\log^* n - \log^* (k+w)))$, depth $O(\log n)$

Conclusion and Open Problems

This talk:

```
Sort n elements, k-bit key and w-bit payload, circuit size O((k+w) \cdot n \cdot k \cdot (\log^* n - \log^*(k+w))), depth O(\log n)
```

Open problems:

- Get rid of log*? (better recursion?)
- Get rid of k? (beyond "indivisible"?)
- Conditional lower bounds?
- Improve segmenter / AKS cycles?