2822

ACM-SIAM Symposium on
Discrete Algorithms

Optimal Sorting Circuits for
Short Keys

Wei-Kai Lin

and Elaine Shi (Carnegie Mellon university)

Carnegie
Mellon

University

Sorting, parameters: n, k, w

n elements

-

k-bit key
w-bit payload

 Known as “integer sorting” [AHNR95][Han02][HT02]
* Payload must be moved as well
» Stability is not required

™ PRRRRRRS

ktbit key
w-bit payload

Circuit
* Input & output: n - (k + w) bits
e Const fan-in and fan-out gates (AND, OR, NOT)
 Efficiency metric (goal):
small size (number of gates)
small depth (length from input to output)

Outpté& Q! &)%} /

Random-Access Machine model (RAM)
Textbook counting sort and radix sort: O(n - k)
Sort n integers, nearly linear time (e.g. O(n - \/log log n)
[Kirkpatrick-Reisch81][Andersson-Hagerup-Nilsson-Raman95] [Han-Thorup02] [Thorup02] [Han04]

[Belazzougui-Brodal-Nielsen14]
(word size > log n bits)

Techniques: counting / hashing based =2 need random accesses

Circuit is fixed

=» more challenging

HERRR .
Random access: read / write memory word

depend on input data

/

eI

Sorting circuits imply *super* efficient algorithms
Offline oblivious RAM [Boyle-Naor16] Implication

Function inversion / static non-adaptive data structures
[Hellman80] [Corrigan-Gibbs&Kogan19] [Dvorak-Koucky-Kral-Slivova21]

Network coding conjecture [Ahlswede-Cai-Li-Yeung00] [Li-Li04]
[Adler-Harvey-Jain-Kleinberg-Lehman06] [Afshani-Freksen-Kamma-Larsen19] [Asharov-Lin-Shi21]

Sorting circuit is “not easier” to construct

Lower bound for XXX is
“not easier than lower bound for sorting circuits”
(barrier for lower bound)

Question:
Best sorting in circuit size and depth?

Previous sorting circuits

LR

Com.parl.son-based sorting networks”: “Comparator” <
* Bitonic sort [Batcher68]

size O((k + w) - nlog? n), depth 0(log? n) (practical)
* AKS [Ajtai-Komlos-Szemeredi83] [Patterson90] [Seiferas09] [Goodrich14]

size 0((k + w) - nlog n), depth O(logn)

ﬁ * “Indivisible” payloads: ﬁ

* (k+w)-nlogn is necessary * (k+w)-n-kis necessary
* If stable (order preserving),

 evenwhenk =1 1 henk =1
) . nlogn even when k =
(zero-one principle [knuth9g]) [Lin-Shi-Xie19]

e Comparison-based:

Previous sorting circuits

Non-comparison-based, indivisible payload, not stable:

* [Pippenger96], “self-routing superconcentrator”
size 0((k +w)-n+n-log n), depth O(log® n)

* [Leighton-Ma-Suel95] [Mitchell-Zimmerman14] [Lin-Shi-Xiel9] (randomized)
[Asharov-Komargodski-Lin-Nayak-Peserico-Shi20] [Dittmer-Ostrovsky20]

size 0((k +w) -n -k -loglogn), depth poly logn
e [Asharov-Lin-Shi21]
size O((k+w) -n-k-poly(log"n —log*(k + w))), depth > polylogn

4)
All poly log n depth
NS J

* [Koucky-Kral21, concurrent]
size O((k+w) -n- k- (log”n —log*(k +w)), depth 0(log®n)

=>» All poly logn depth

Lower bound is log 1 [cook-Dwork-Reischuksé]

AKS is O(log n) depth

Some implication

[Corrigan-Gibbs&Kogan19]
[Dvorak-Koucky-Kral-Slivova21]

Main Theorem:
Sort n elements, each consists of k-bit key and w-bit payload, in circuit

size O((k + w) - n - k - poly(log* n — log*(k + w))), depth O(logn + logw)

[Non-comparison, “indivisible” payload, not stable J

Size = 0((k +w) -n- k) forany (k + w) > 1log1%9 n [optimal]

Intermediate result, Deterministic Oblivious Parallel RAM:
Sort n elements, each consists of k-bit key and w-bit payload, in
total work O(n - k), parallel time O(logn) [optimal]

Application: To hide data from adversary that “observe accesses”

E.g. oblivious sorting is essential for oblivious RAM (ORAM) algorithms
[GO96] [Ajtai10] [DMN1] [GM11] [KLO12] [CGLS17] [PPRY18] [AKLNPS20] [DO20] ...

Main Theorem:
Sort n elements, each consists of k-bit key and w-bit payload, in circuit

size O((k +w) - n- k - poly(log* n — log*(k + w))), depth O(logn + log w)

Challenges

‘ﬁ * All previous & concurrent results takes depth poly logn

Achieve log n depth circuit for k = 1:

[Pippenger96] [Asharov-Lin-Shi21] [Koucky-Kral21]
Based on Pippenger’s “self-routing superconcentrator”

* Need depth O(logn)

Novel 1-bit to k-bit upgrade:
° * 1-bitis not stable = “radix sort” not work

% e “Quick sort” approach (using median) =2 poly log factors

[Lin-Shi-Xie19] [Asharov-Lin-Shi21] [Koucky-Kral21]
 Need “additive” depth

_ﬁ 1-bit to k-bit upgrade { Previous approaches }

[Radix sort?] [Quicksort?

1-bit sorter (least significant bit) x Depth of | Find median, then 1-bit sorter
— median? FE— = —
1-bit sorter (2" least significant bit) — 17z elem, smaller 1! n/2 elem, greater
X Need stable . .
1mommmmommomees N Median + 1-bit sort || Median + 1-bit sort
T T e e R
on/4 i on/4 i on/4 i n/4

If stable and indivisible, ﬁ

nlogn is necessary

[Lin-Shi-Xie19] X Total depth =

poly log

_ﬁ 1-bit to k-bit upgrade Our new abstraction: p-Segmenter

@@@@@@@@

p-Segmenter:
. Permute elements into p equal-size segments
* Elements are ordered between any two segments

except for 1/p fraction Construction? Want:
Output J l Hj i J H l I J H ‘ Size ~n - k, depth ~ log n
5 0) () (& (3)i():(4)i(\w):
____________________ WIS N T N
L I\ Sets diff by
Sets diff by) (__1/p fraction
L 1/p fraction ﬂ

Totally sorted @ @ @ @ @ @ @ @

p segments oo

Segmenter “errors”
1. Wrong segment
2. Correct segment, wrong position

n/23% elements in wrong seg

Element in correct seg, but wrong position? Sorting every seg is too expensive
o 2K distinct keys in 23% segments

=» Almost all seg consist identical keys when totally sorted ©
e 2% (out of 23%) seg “mixed” =» wrong position ®

= =>» At most n/2%¥ wrong position

_ﬁ 1-bit to k-bit upgrade Segmenter + 1-bit sorting

__________________________ e
h 23K _segmenter j g N
I NG I Identify “almost uniform” seg
. x x :i X (get 1/22" “wrong-seg elem” and

IR S A S SR “mixed seg”)
o %

Sort
(using 2% instances of 1-bit sorting)

~

[Move short array to segments

_ﬁ Construct p-Segmenter { Revisit AKS sorting (log depth, parallel) 1

Input ’. N

* logn “cycles”

/ Cycle 1 \V Each cycle:

Comparators
Cycle 2 — | * Size O(n), const depth

o

/

e Cycles diff in construction
* Each cycle “refine” outcome

of previous cycle into “more

Output Defined w.r.t. construction of each cycle

[AKS83, main lemma] (skip here) |

_ﬁ Construct p-Segmenter {Revisit AKS sorting (log depth, parallel)}

Input 4)

* logn “cycles”

/ Cycle 1 \V Each cycle:

* Comparators

Cycle 2 — | ¢ Size O(n), const depth
N (n) pth
4 o .)
e Cycles diff in construction

Each cycle “refine” outcome
of previous cycle into “more
" sorted”

—_— ’
Output ||J,_\

Wanted in “Segmenter”

Segmenter based on AKS

/AKS sorting: N
=> logn cycles

=>» Cycles diff in construction

=» Each cycle “refine” outcome of

previous cycle into “more sorted”)

' QOutput is
= “Segmenter”

_ﬁ Construct p-Segmenter

Input

/ Construction of Segmenter:
First k “cycles” of AKS sorting
= 2K_segmenter

Output « 2K equal-sized segments |
'« Ordered elements except for 1/2% fraction

2% _segmenter (comparator network), taking size O(n - k), depth 0(k)
(“wrapping lemma” of [AKS83])

_ﬁ 1-Bit sorting in log n depth circuit { Previous approaches J

Input: n elements, < 1% marked

OO00O00O00O0OO0O Building block O0000000

[Pippenger96] [Ash-Kom-Lin-Nay-

’ Pes-Shi20] [Asharov-Lin-Shi21] -

: : D O S N
1-bit sorting A nelements \] .
- - 00Sse compaction
(aka tight compaction) “Approx sort” P
—~ig—

- -

\
|
|
|
! OO®
:
|

Loose compaction

[
|
|
|
OO000000O0
| Output: n/2 elements,
: - » include all marked input
Approx sort
Loose compaction ¢ Depth of loose compact =logn
" T =>» Total depth = poly log
\ q

-+« (recurse) .

_ﬁ 1-Bit sorting in log n depth circuit Low depth

“sparse” loose compaction

Input: n elements,

OQOO0O0000O [Bp,t‘p'fgﬂ,%] block n/polylogn marked
- [Ash-Kom-Lin-Pes-Shi20] O O O O O O O O

1-bit sorting |

Improved construct:

(aka tight compaction) . v] _d Sparse
poty l0g n-aegree Loose compaction
‘-7 expander graph
(const degree in Pippenger) ‘-V
OO0O0OOOO00O « size:0m) OO®
* Depth: O(logn) Output: n/logn elements,
include all marked input

N
Y~
~

<" Apply several A
loose compact... ™ '

{ “Repeated bootstrapping”

>"""Previous:
[Asharov-Lin-Shi21] J

i

S ———--

{Epilogue: Reducing poly log* tolog®

This work:
size O((k +w) -n - k- poly(log*n —log*(k + w))), depth 0 (logn)

[Koucky-Kral21, concurrent]
size O((k +w) -n- k- (log”n —log*(k + w))), depth 0(log®n)

[Better “repeated bootstrapping” technique}

Putting together:
Sort n elements, k-bit key and w-bit payload,

circuit size 0((k + w) - n - k - (log* n — log*(k + w))), depth 0 (logn)

Conclusion and Open Problems

This talk:
Sort n elements, k-bit key and w-bit payload,

circuit size O((k + w) - n- k - (log* n — log*(k + w))), depth 0 (logn)

Open problems:

* Getrid of log*? (better recursion?)
* Getrid of k? (beyond “indivisible”?)
* Conditional lower bounds?

* Improve segmenter / AKS cycles?

Thank you!

	Slide 1: Optimal Sorting Circuits for Short Keys
	Slide 2: Sorting, parameters: n ,, k ,, w
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Conclusion and Open Problems

